University of Malta
Browse
.H5
ground_lastro_epfl_100epochs.h5 (65.11 MB)
.H5
ground_lastro_epfl_250epochs.h5 (65.11 MB)
.H5
ground_lens_finder_50epochs.h5 (118.15 MB)
.H5
ground_lens_finder_100epochs.h5 (118.15 MB)
.H5
ground_lens_finder_250epochs.h5 (118.15 MB)
.H5
ground_lens_flow_50epochs.h5 (1.2 MB)
.H5
ground_lens_flow_100epochs.h5 (1.2 MB)
.H5
ground_lens_flow_250epochs.h5 (1.2 MB)
.H5
ground_wsi_net_50epochs.h5 (30.09 MB)
.H5
ground_wsi_net_100epochs.h5 (30.09 MB)
.H5
ground_wsi_net_250epochs.h5 (30.09 MB)
.H5
space_cas_swinburne_5epochs.h5 (46.12 MB)
.H5
space_cas_swinburne_10epochs.h5 (46.12 MB)
.H5
space_cas_swinburne_25epochs.h5 (46.12 MB)
.H5
space_cas_swinburne_50epochs.h5 (46.12 MB)
.H5
space_cas_swinburne_75epochs.h5 (46.12 MB)
.H5
space_cas_swinburne_100epochs.h5 (46.12 MB)
.H5
space_cas_swinburne_250epochs.h5 (46.12 MB)
.H5
space_cmu_deeplens_5epochs.h5 (41.12 MB)
.H5
space_cmu_deeplens_10epochs.h5 (41.12 MB)
1/0
54 files

LEXACTUM trained model weights

dataset
posted on 2024-07-12, 07:22 authored by DANIEL MAGRO, KRISTIAN ZARB ADAMIKRISTIAN ZARB ADAMI, Andrea De MarcoAndrea De Marco, Simone Riggi, Eva Sciacca

These files are the weights from the models described in our paper, "Convolutional Neural Networks for the Automated Detection of Strong Gravitational Lensing" (https://academic.oup.com/mnras/article/505/4/6155/6295319), trained for a varying number of epochs.

The dataset on which these models have been trained is available on the Gravitational Lens Finding Challenge 1.0 web page:
http://metcalf1.difa.unibo.it/blf-portal/gg_challenge.html


The code written to train and load these models is available on the GitHub repository:
https://github.com/DanielMagro97/LEXACTUM


These models were also previously uploaded to, and are accessible on, Zenodo:
https://zenodo.org/records/4299924

Funding

D. Magro benefited from a grant: Osservatorio Astrofisico di Catania - Istituto Nazionale di Astrofisica, MoU: "High performance computing in astronomy, astrophysics and particle physics"

History

Project Name

Deep learning applied to big astronomical data from SKA and its precursors